

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

v1.2.8

Support for multiple markers

v1.2.7

	Add a file-size upload limit (defaults to 5GB)

	Add verification that ‘release_assignment’ and ‘submit’ actually store the received file

	Correct bug in full name handlers

	Fix library versions for dependencies

v1.2.6

Strip forward slashes from usernames

v1.2.1

Move from setup.py to pyproject.toml

v1.2.0

Add full names to gradebook when available

v1.1.0

Update the exchange & plugin to use a fixed timestamp

v1.0.1

Fix timestamps

v1.0.0

First release of nbexchange after open sourcing the code.

Contributing to nbexchange

We’re thrilled you want to contribute to this nbgrader exchange package.

Opening an Issue

When opening a new Issue, please take the following steps:

	Search GitHub and/or Google for your issue to avoid duplicate reports. Keyword searches for your error messages are most helpful.

	If possible, try updating to master and reproducing your issue, because we may have already fixed it.

	Try to include a minimal reproducible test case.

Pull Requests

Some guidelines on contributing to nbexchange:

	All work is submitted via Pull Requests.

	Pull Requests should be submitted as soon as there is code worth discussing. Pull Requests track the branch, so you can continue to work after the PR is submitted. Review and discussion can begin well before the work is complete, and the more discussion the better. The worst case is that the PR is closed.

	Pull Requests should generally be made against master

	Pull Requests should be tested, if feasible:

	bugfixes should include regression tests.

	new behavior should at least get minimal exercise.

	New features and backwards-incompatible changes should be very clearly documented.

Github does a pretty good job testing nbexchange and Pull Requests, but it may make sense to manually perform tests.

Developing nbexchange

Whilst nbexchange can run under python>3.7, the developers of the system currently run under 3.11.

We suggest you set up an appropriate virtual environment.

To setup nbexchange for development, run:

pip install .[test]

or

pip install .[test]

if zsh or similar

When writing code, please don’t rely on code is its own documentation - particularly if you’re doing anything remotely complicated.
A simple comment at the top is useful for future developers to know why the code is doing something.

Formatting code.

We use pre-commit [https://pre-commit.com/] to ensure consistency.

All (appropriate) files are checked with isort, black, and flake8.

Running Tests

Tests should be run locally before final commit & Pull Request is made.

GitHub Actions run Tests. These teste include checking that files are linted to our preferred style: black [https://github.com/psf/black]

When you add/change/improve functionality, please please please write tests as well.

Tests should check that error cases are handled, and that [where applicable] both singular & multiple actions are handled correctly.

There is no such thing as too many tests

Example testing process

This is how I test, using a virtual environment

pip install .[test]
pytest nbexchange

Soak testing the exchange

Unit tests check methods and end-points, on an individual and singular level

To test that the exchange is happily handling large classes, we’ve included a script called soak_trial.py
(not soak_test, as the GitHub auto-testing routines assume any file with test in the name should be run… oops)

This script is designed for EDINA’s Noteable service - you will probably need to copy & edit for your own environment

	The script assumes that the exchange is being run in a kubernetes cluster, and the tests are happening fromm a developers workstation.

	This means the developer needs an accessible kube-config for that cluster

	By default, it wants to connect to the default namespace in EDINA’s dev cluster - but these can be changed with command-line parameters.

	Noteable uses JWT tokens for authentication, so you’ll need to edit the code to set up user authentication to match whatever you’re using (ie, whatever you’ve got in nbexchange/handlers/auth/????)

Usage

The script will auto-find the exchange server, and prompt for the magick to allow the script to connect.

The script is designed around reasonable higher-end numbers, based on what our customers are doing

	The Course & Assignment codes are randomely generated to avoid interacting with existing data

	The script defaults to 250 students

	The script has a single assignment file (4.3MB) plus an accompanying data-file (42KB)

	The script deletes records of it’s run (as far as possible)

	Use python soak_trial.py -h for the list of parameters

Sample run (a single student):

❯ python soak_trial.py -s 1

Set up port forwarding
Please open a new terminal and run the following command(s):

 kubectl port-forward pod/naas-dev-nbexchange-5b67cc5759-m2mvv 9000:9000

.... and wait for the command to say it's forwarding - then press enter here to continue
WARNING:__main__:Looking good: Going to test 1 students in cluster 'noteable-dev', using nbexchange 'naas-dev-nbexchange-5b67cc5759-m2mvv'
WARNING:__main__:Instructor Release
WARNING:__main__:Students fetch and submit
WARNING:__main__:student_fetch called - username: 1-s000001
WARNING:__main__:student_submit called - username: 1-s000001
WARNING:__main__:instructor_collect called - username: 1-instructor
WARNING:__main__:collected 1-s000001
WARNING:__main__:instructor_release_feedback called - username: 1-instructor
WARNING:__main__:Uploaded feedback for 1-s000001 on assignment 1d9ac160-3400-470f-894d-90c245284b8a.
WARNING:__main__:student_fetch_feedback called - username: 1-s000001
WARNING:__main__:Finished: An assignment with 1 students has done 'release_assignment', 'fetch_assignment', 'submit', 'collect', 'release_feedback', and 'fetch_assignment'.
WARNING:__main__:Tidy_up called: assignment_id=1d9ac160-3400-470f-894d-90c245284b8a (keep_data?: False)
WARNING:__main__:We're purging the data.... so deleting files too
WARNING:__main__:
 SQL Tidy-up instructions, until the new 'purge' code is in the exchange

 delete from from assignment where assignment_code = '1d9ac160-3400-470f-894d-90c245284b8a';

 [image: _images/badge.svg]Linted
[image: _images/badge1.svg]codecov [https://codecov.io/gh/edina/nbexchange]
[image: Docker Repository on Quay]Docker Repository [https://quay.io/repository/noteable/nbexchange]

A dockerised service that replaces the defaukt nbgrader Exchange.

	What is nbexchange

	Why nbexchange

	Compatibility

	Documentation

	Database relationships

	Installing

	nbexchange service

	Helm

	nbgrader plugin

	Configuration

	Configuring nbexchange

	user_plugin_class revisited

	Configuring nbgrader

	Contributing

	Releasing new versions

What is nbexchange

nbexchange is an extension to nbgrader [https://github.com/jupyter/nbgrader] which provides a mechanism for assignments to transferred in a distributed Jupyter Notebooks environment.

The default for nbgrader is to assume all users are on the same computer, and files are copied from one directory to another - thus:
[image: _images/file_exchange.png]exchange mechanism on a single filesystem

When using jupyter notebooks in a distributed [dockerised] system, there is no common filesystem - so an alternative mechanism is
needed - something that allows files to be transfered via some independant service - eg:
[image: _images/dockerised_exchange.png]exchange mechanism in a dockerised environment

nbexchange provides both that intermediate filestore, and the plugins for nbgrader to use it.

Why nbexchange

From nbgrader [https://github.com/jupyter/nbgrader]: Assignments are created, generated, released, fetched, submitted, collected, graded. Then feedback can be generated, released, and fetched.

The exchange is responsible for recieving release/fetch path, and submit/collect cycle. It also allows feedback to be transferred from instructor to student.

In doing this, the exchange is the authoritative place to get a list of what’s what.

nbexchange is an external exchange plugin, designed to be run as a docker instance (probably inside a K8 cluster)

It’s provides an external store for released & submitted assignments, and the feeback cycle.

Following the lead of other Jupyter services, it is a tornado application.

Compatibility

This version installs nbgrader 0.8.2 (which makes it compatible with JupyterLab too)

Documentation

This exchange has some assumptions because of the environment required it.

There are the following assumptions:

	You have an API for authenticating users who connect to the exchange (possibly Jupyterhub, but not always)

	Usernames will be unique across the whole system

	Internal storage is in two parts:

	An sql database for metadata, and

	A filesystem for, well, files.

	There will always be a course_code

	There may be multiple assignments under one course,

	assignment_codes will be unique to a course

	assignment_codes may be repeated in different organisation_id

	Note that default nbgrader does not distinguish assignment_codes across different course_codes, within the same gradebook database.

	There will always be an organisation_id

	course_codes must be uniqie within an organisation_id,

	course_codes may be repeated in different organisation_id

Database relationships

[image: _images/table_relationships.png]Diagram of table relationships

Installing

nbexchange is a two-part system: it requires

	the nbexchange service to be running (in a docker container)

	the plugins to be installed in the jupyter notebook (which will also install nbgrader)

nbexchange service

The nbexchange is designed to be run as a docker instance, possibly in a kubernetes cluster

See the Dockerfile / docker-compose.yml files for creating the service.

Helm

The service can be deployed via helm, ie

helm install --name nbexchange --namespace default ./chart -f myconfiguration.yaml

nbgrader plugin

Installing nbexchange will also install nbgrader.

nbexchange is not released to Pypy or anaconda, however you can install direct from GitHub - eg:

pip install https://github.com/edina/nbexchange/archive/v1.3.0.tar.gz

jupyter nbextension install --sys-prefix --py nbgrader
jupyter nbextension enable --sys-prefix validate_assignment/main --section=tree
jupyter serverextension enable --sys-prefix nbgrader.server_extensions.validate_assignment
jupyter nbextension enable --sys-prefix assignment_list/main --section=tree
jupyter serverextension enable --sys-prefix nbgrader.server_extensions.assignment_list
....

Note that the jupyter lab extensions are installed and enabled automatically - you may wish to switch off formgrader and create_assignment for non-teachers: YMMV

Configuration

There are two parts to configuring nbexchange:

	Configure nbexchange itself

	Configure nbgrader to use nbexchange

Configuring nbexchange

The exchange uses nbexchange_config.py for configuration.

This is an example config file:

from nbexchange.handlers.auth.user_handler import BaseUserHandler

class MyUserHandler(BaseUserHandler):

 def get_current_user(self, request):
 return {
 "name": "username",
 "full_name": "Joe Bloggs",
 "course_id": "cool_course_id",
 "course_title": "cool course",
 "course_role": "Student",
 "org_id": 1,
 "cust_id": 2,
 }

c.NbExchange.user_plugin_class = MyUserHandler

c.NbExchange.base_url = /services/exchange
c.NbExchange.base_storage_location = /var/data/exchange/storage
c.NbExchange.db_url = mysql://username:password@my.msql.server.host:3306/db_name

	user_plugin_class

For the exchange to work it needs some details about the user connecting to it. This parameter defines the class that provides the get_current_user method.

See below for more details on that.

	base_url

This is the service url for jupyterhub, and defaults to /services/nbexchange/

Can also be defined in the environment variable JUPYTERHUB_SERVICE_PREFIX

	base_storage_location

This is where the exchange will store the files uploaded, and defaults to /tmp/courses

Can also be defined in the environment variable NBEX_BASE_STORE

	db_url

This is the database connector, and defaults to an in-memory SQLite (sqlite:///:memory:)

Can also be defined in the environment variable NBEX_DB_URL

	db_kwargs

Where to include any kwargs to pass to the database connection.

	max_buffer_size

The service will limit the size of uploads. The figure is bytes

By default, upload sizes are limited to 5GB (5253530000)

	upgrade_db, reset_db, debug_db

Do stuff to the db… see the code for what these do

user_plugin_class revisited

For the exchange to work, it needs some details about the user connecting to it - specifically, it needs 7 pieces of information:

	name: The username of the person (eg perllaghu).

	In our system, we prefix the persons login username with the org_id for where their from (eg 1_perllaghu.)

	full_name: The optional full name, if supplied by the remote authenticator.

	The full name appears in the formgrader UI.

	course_id: The course code as used in nbgrader (eg cool_course).

	This is course_id not course_code, as nbgrader uses course_id for this piece of data.

	course_title: A long name for the course (eg `A course of understanding thermondynamics in bulk refrigerant transport”).

	course_role: The role of the user, normally Student or Instructor. (currently only Instructor get privilaged actions).

	org_id: As mentioned above, nbexchange divides courses and users across organisations. This is an id (numeric) for the org_id for the user.

	cust_id: Whilst most of the exchange is keyed on the org_id, knowing customer can be useful. This is an id (numeric) for the org_id for the user.

Configuring nbgrader

The primary reference for this should be the nbgrader documentation - but in short:

	Use the nbgrader code-base that supports the external exchange (nbgrader 0.7 and later)

	Install the code from nbexchange/plugin into nbgrader

	Include the following in your nbgrader_config.py file:

A plugin for collecting assignments.
c.ExchangeFactory.collect = 'nbexchange.plugin.ExchangeCollect'
A plugin for exchange.
c.ExchangeFactory.exchange = 'nbexchange.plugin.Exchange'
A plugin for fetching assignments.
c.ExchangeFactory.fetch_assignment = 'nbexchange.plugin.ExchangeFetchAssignment'
A plugin for fetching feedback.
c.ExchangeFactory.fetch_feedback = 'nbexchange.plugin.ExchangeFetchFeedback'
A plugin for listing exchange files.
c.ExchangeFactory.list = 'nbexchange.plugin.ExchangeList'
A plugin for releasing assignments.
c.ExchangeFactory.release_assignment = 'nbexchange.plugin.ExchangeReleaseAssignment'
A plugin for releasing feedback.
c.ExchangeFactory.release_feedback = 'nbexchange.plugin.ExchangeReleaseFeedback'
A plugin for submitting assignments.
c.ExchangeFactory.submit = 'nbexchange.plugin.ExchangeSubmit'

These plugins will also check the size of releases & submissions

c.Exchange.max_buffer_size = 204800 # 200KB

By default, upload sizes are limited to 5GB (5253530000)
The figure is bytes

Contributing

See how_it_works.md for an extended explanation as to how the exchange works, internally

See Contributing.md for details on how to extend/contribute to the code.

Releasing new versions

	Update pyproject.toml and nbexchange/__init__.py to change to the new version

	Create a new git tag doing git tag -a vx.y.z to match the version above

How the NBExchange service works

nbexchange is an extension to nbgrader [https://github.com/jupyter/nbgrader] which provides a mechanism for assignments to transferred in a distributed Jupyter Notebooks environment. (See https://nbgrader.readthedocs.io/en/stable/exchange/exchange_api.html for documentation on how nbgrader expects to operate.)

Configuration documentation is in the README.md

	How the NBExchange service works

	It’s all about the actions

	The calls

	list

	release-assignment

	fetch-assignment

	submit

	collect

	release-feedback

	fetch-feedback

	API Specification for the NBExchange service

	Assignments

	Assignment

	Submission

	Collections

	Collection

	Feedback

It’s all about the actions

Fundamentally, the exchange revolves around action table - this is where we record who does what, and the location of the file is held.

The location follows a standard format:

path.join(
 base_storage_location,
 org_id,
 action,
 course_code,
 assignment_code,
 time.now(),
 filename
)

The calls

Lets follow an assignment cycle, and see how the exchange records everything

In all cases, the user is authenticated using the get_current_user method, and subscribed to the course with the role defined in that call.

All calls check that the user is subscribed to the course given in the parameter

list

GET /assignments?course_id=$cid)

Get list of all assignments associated with that course. We return a list of all released assignments.

release-assignment

POST /assignment?course_id=$cid&assignment_id=$aid, files = _zip-file_

We verify the user is an instructor, and subscribed to the course.

	Create the assignment and link it to the course,

	Grab the first uploaded file (we use .zip files for assignments) and store it in a location,

	Create an action record, noting action=released, the assignment, file location, who did the action, and add a timestamp

fetch-assignment

GET /assignment?course_id=$cid&assignment_id=$aid

	Find the released action for that assignment, and download the file from the given location

	Create an action record, noting action=fetched, the assignment, file location, who did the action, and add a timestamp

submit

POST /submission?course_id=$cid&assignment_id=$aid, files = _zip-file_

	Grab the first uploaded file (we use .zip files for assignments) and store it in a location,

	Create an action record, noting action=submitted, the assignment, file location, who did the action, and add a timestamp

collect

We verify the user is an instructor, and subscribed to the course.

Get a list of all available submissions (GET /collections?course_id=$cid&assignment_id=$aid - optional &user_id=$uid)

For each submission listed:

	Download the file from the given location

	Create an action record, noting action=collected, the assignment, file location, who did the action, and add a timestamp

release-feedback

We verify the user is an instructor, and subscribed to the course.

Each autograded .ipynb file has a matching .html file - For each .html file:

	Grab the first uploaded file (POST /feedback?course_id=$cid&assignment_id=$aid¬ebook=$nb&student=$sid×tamp=$ts&checksum=$cs, files = text-file), and store it in a location,

	timestamp ($ts), in this instance, it the timestamp recorded from the student submission.

	Record the details, noting the notebook, the instructor (this.user), the student ($sid), and the given timestamp ($ts)

	Create an action record, noting action=feedback_released, the assignment, file location, who did the action, and add a timestamp

fetch-feedback

GET /feedback?course_id=$cid&assignment_id=$aid

Download all the feedback for the current user, for the given course & assignment.

Note that the (.html) feedback files are held as base64-encoded content in the returned data-object.

Create an action record, noting action=feedback_fetched, the assignment, file location, who did the action, and add a timestamp

API Specification for the NBExchange service

All URLs relative to /services/nbexchange

Assignments

.../assignments?course_id=$course_code

GET: returns list of assignments

Returns

{"success": True,
 "value": [{
 "assignment_id": "$assignment_code",
 "course_id": "$course_code",
 "student_id": Int
 "status": Str,
 "path": path,
 "notebooks": [
 { "notebook_id": x.name,
 "has_exchange_feedback": False,
 "feedback_updated": False,
 "feedback_timestamp": None, } for x in assignment.notebooks],
 "timestamp": action.timestamp.strftime(
 "%Y-%m-%d %H:%M:%S.%f %Z"
),
 },
 {},..
]}

or

{"success": False, "note": $note}

Assignment

.../assignment?course_id=$course_code&assignment_id=$assignment_code

GET: downloads assignment

Returns binary data or raises Exception (which is returned as a 503 error)

POST: (role=instructor, with file): Add (”release”) an assignment
returns

{"success": True, "note": "Released"}

or raises Exception (which is returned as a 503 error)

DELETE: (role=instructor, with file): Remove an assignment.

Marks an asiignment as active: False, and forgets any associated notebooks. Returns

{"success": True, "note": "Assignment '$assignment_code' on course '$course_code' marked as unreleased by user $user"

Takes as optional parameter purge. This will delete the notebooks, the assignment,
and any associated data (actions, feedback, etc). Returns

{"success": True, "note": "Assignment '$assignment_code' on course '$course_code' deleted and purged from the database by user $user"}

If there are permission issues, returns

{"success": False, "note": $note}

Submission

.../submission?course_id=$course_code&assignment_id=$assignment_code

POST: stores the submission for that user
returns

{"success": True, "note": "Released"}

or raises Exception (which is returned as a 503 error)

Collections

.../collections?course_id=$course_code&assignment_id=$assignment_code

GET: gets a list of submitted items
Return: same as Assignments <#assignments>

Collection

.../collections?course_id=$course_code&assignment_id=$assignment_code&path=$url_encoded_path

GET: downloads submitted assignment
Return: same as Assignment <#assignment>

Feedback

GET: downloads feedback

.../feedback?course_id=$course_code&assignment_id=$assignment_code

Optional parameter

user_id=$user_id

Return: Returns a data structure similar to the above, except value is a list of feedback items:

{"success": True,
 "value": [{
 "content": base64-encoded html file
 "filename": notebook-name.html
 "timestamp": timestamp.strftime("%Y-%m-%d %H:%M:%S.%f %Z")
 "checksum": checksum
 },
 {},..
]}

POST: uploads feedback (one notebook at a time)

.../feedback?course_id=$course_code&assignment_id=$assignment_code¬ebook=$nb_name&student=$sid×tamp=$ts&checksum=$abc123

If there are permission issues, returns

{"success": False, "note": $note}

else

{"success": True, "note": "Feedback released"}

or raises an error - should be a 404 or 412.

Generic single-database configuration.

Building migrations:

Build a fresh database

NBEX_DB_URL="sqlite:///test.db" nbexchange

Create a migration:

NBEX_DB_URL="sqlite:///test.db" python -m nbexchange.dbutil alembic revision --autogenerate -m "Change subscription column width"

Apply a migration:

NBEX_DB_URL="sqlite:///test.db" python -m nbexchange.dbutil alembic upgrade head

 _static/ajax-loader.gif

_images/table_relationships.png
feedback 2

notebook
,, SeRiAL
name CHARACTER VARYING(128)
assignment_id INTEGER 2
user
»| id SERIAL.

name CHARACTER VARYING(200)
orgid INTEGER
full_name TEXT

a SERIAL
notebool id INTEGER »
instructor_id INTEGER »
Studentid INTEGER »
location CHARACTER VARYING(200)
checksum CHARACTER VARYING(200)
timestamp TIMESTAMP(6) WITH TIME ZONE
created_at_ TIMESTAMP(6) WITH TIME ZONE
action
@ SERIAL
userid INTEGER
assignment. id INTEGER
action assignmentactions
location CHARACTER VARYING(200)
timestomp TIMESTAMP(6) WITHOUT TIME ZONE
checksum CHARACTER VARYING(00)
subscription
@ SERIAL

user_id INTEGER 7

alembic_version

Version_num CHARACTER VARYING(2)

course_id INTEGER 7V

role TEXT

assignment

i SERIAL

assignment_code TEXT

active BOOLEAN

course_id INTEGER A

course

i SERIAL
org.id INTEGER

course_code CHARACTER VARYING(200)
course.title CHARACTER VARYING(200)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/dockerised_exchange.png

_images/file_exchange.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

